31 research outputs found

    Invasive Disease Caused by Nontuberculous Mycobacteria, Tanzania

    Get PDF
    Data on nontuberculous mycobacterial (NTM) disease in sub-Saharan Africa are limited. During 2006–2008, we identified 3 HIV-infected patients in northern Tanzania who had invasive NTM; 2 were infected with “Mycobacterium sherrisii” and 1 with M. avium complex sequevar MAC-D. Invasive NTM disease is present in HIV-infected patients in sub-Saharan Africa

    Development and Evaluation of a Molecular Assay for Detection of Nontuberculous Mycobacteria by Use of the Cobas Amplicor Platform▿

    No full text
    We have developed and evaluated a semiautomated assay for detection of nontuberculous mycobacteria (NTM) from clinical samples based on the Cobas Amplicor Mycobacterium tuberculosis test (Roche Diagnostics, Switzerland). A capture probe, specific for mycobacteria at the genus level, was linked to magnetic beads and used for the detection of amplification products obtained by the Cobas Amplicor M. tuberculosis assay. We demonstrate that the analytical sensitivity of the genus assay is similar to that of Cobas Amplicor M. tuberculosis detection. Four hundred sixteen clinical specimens were evaluated for the presence of NTM DNA. Sensitivities for smear-positive and smear-negative specimens were found to be 100% and 47.9%, respectively. Specificity was 97.7%, the positive predictive value 84.6%, and the negative predictive value 93.1%. The genus assay is easy to perform, produces reliable results, and was found to be a valuable diagnostic tool for rapid diagnosis of infections with NTM. The genus assay has the potential to detect NTM not routinely recovered by culture and to discover new mycobacterial species

    16S rRNA Gene Sequencing versus the API 20 NE System and the VITEK 2 ID-GNB Card for Identification of Nonfermenting Gram-Negative Bacteria in the Clinical Laboratory

    No full text
    Over a period of 26 months, we have evaluated in a prospective fashion the use of 16S rRNA gene sequencing as a means of identifying clinically relevant isolates of nonfermenting gram-negative bacilli (non-Pseudomonas aeruginosa) in the microbiology laboratory. The study was designed to compare phenotypic with molecular identification. Results of molecular analyses were compared with two commercially available identification systems (API 20 NE, VITEK 2 fluorescent card; bioMérieux, Marcy l'Etoile, France). By 16S rRNA gene sequence analyses, 92% of the isolates were assigned to species level and 8% to genus level. Using API 20 NE, 54% of the isolates were assigned to species and 7% to genus level, and 39% of the isolates could not be discriminated at any taxonomic level. The respective numbers for VITEK 2 were 53%, 1%, and 46%, respectively. Fifteen percent and 43% of the isolates corresponded to species not included in the API 20 NE and VITEK 2 databases, respectively. We conclude that 16S rRNA gene sequencing is an effective means for the identification of clinically relevant nonfermenting gram-negative bacilli. Based on our experience, we propose an algorithm for proper identification of nonfermenting gram-negative bacilli in the diagnostic laboratory
    corecore